Information theoretical estimators toolbox
نویسنده
چکیده
Since the pioneering work of Shannon, entropy, mutual information, association, divergence measures and kernels on distributions have found a broad range of applications in many areas of machine learning. Entropies provide a natural notion to quantify the uncertainty of random variables, mutual information and association indices measure the dependence among its arguments, divergences and kernels offer efficient tools to define the ‘distance’ and the inner product of probability measures, respectively.
منابع مشابه
Non-parametric Entropy Estimation Toolbox (NPEET)
This document describes a package of Python code for implementing various non-parametric continuous entropy estimators (and some discrete ones for convenience). After describing installation, Sec. 4 provides a wide-ranging discussion of technical, theoretical, and numerical issues surrounding entropy estimation. Sec. 5 provides references to the relevant literature for each estimator implemente...
متن کاملEconometric Computing with HC and HAC Covariance Matrix Estimators
Data described by econometric models typically contains autocorrelation and/or heteroskedasticity of unknown form and for inference in such models it is essential to use covariance matrix estimators that can consistently estimate the covariance of the model parameters. Hence, suitable heteroskedasticity-consistent (HC) and heteroskedasticity and autocorrelation consistent (HAC) estimators have ...
متن کاملLimiting Properties of Empirical Bayes Estimators in a Two-Factor Experiment under Inverse Gaussian Model
The empirical Bayes estimators of treatment effects in a factorial experiment were derived and their asymptotic properties were explored. It was shown that they were asymptotically optimal and the estimator of the scale parameter had a limiting gamma distribution while the estimators of the factor effects had a limiting multivariate normal distribution. A Bootstrap analysis was performed to ill...
متن کاملEffect of Measurement Errors on a Class of Estimators of Population Mean Using Auxiliary Information in Sample Surveys
We consider the problem of estimation the population mean of the study variate Y in presence of measurement errors when information on an auxiliary character X is known. A class of estimators for population means using information on an auxiliary variate X is defined. Expressions for its asymptotic bias and mean square error are obtained. Optimum conditions are obtained for which the mean...
متن کاملA Class of Ratio Estimators of a Finite Population Mean Using Two Auxiliary Variables
In sample surveys, it is usual to increase the efficiency of the estimators by the use of the auxiliary information. We propose a class of ratio estimators of a finite population mean using two auxiliary variables and obtain mean square error (MSE) equations for the class of proposed estimators. We find theoretical conditions that make proposed family estimators more efficient than the traditio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 15 شماره
صفحات -
تاریخ انتشار 2014